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Motivation



fun1 = lambda x: 
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x = 1e16 
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Note: “exact_XXX” is implemented with python module “decimal”.
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Floating-point computations have to be carefully designed to avoid large precision 
loss in the result. 

   

   

Precision Loss



Challenges of Numerical Software
● Precision loss

○ A large numerical error in the output 

● Numerical instability
○ A slight change in the input leads to a large change in the output

● Floating-point exceptions
○ Overflow / Underflow, NaNs

● Path divergence
○ Roundoff errors make the program to take a different branch 

● ...



Empirical Questions to Answer

● Bug Categorization
○ What kinds of numerical bugs exist in real-world numerical software? How 

frequent are these bugs?

● Bug Detection
○ What are the symptoms of numerical bugs? Can we automate the detection 

of these bugs?

● Bug Fixing
○ How are numerical bugs fixed? Can we automatically fix these bugs? 



Methodology
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Identification of Numerical Bugs
● Bug reports or GitHub issues/pull requests
● Filtered by:

○ Status  : Closed 
○ Associated Commits/Patches : Number of (commits/patches) >= 1
○ Labels : w/o build, documentation or other conflicting labels with numeric
○ Keyword Filters : nan, exception, overflow, underflow, infinity, infinite, 

precision, unstable, instability, ringing, unbounded, roundoff, truncation, 
rounding, diverge, cancellation, cancel, accuracy, accurate

● Additional random sampling if needed
● Manual inspection



Identification of Numerical Bugs

Library #Bugs Filter/Sample Inspected Identified

NumPy 9008 Sample 100 24
SciPy 7345 Sample 100 71
Elemental 230 Status Filter 185 9
LAPACK1 148 Commit Filter 135 38
LAPACK2 140 Label Filter 90 4
GSL 218 None 218 123

Total 17089 NA 828 269



Main Findings



Numerical Bug Categorization

Out of the 828 bugs manually inspected, 269 are numerical bugs  



Example of Accuracy Bug
>>>  import numpy as n
>>>  a = n.ones( (1000, 1000), dtype=n.float32 ) * 132.00005
>>>  a.min()
132.000045776
>>>  a.max()
132.000045776
>>>  a.mean()
133.96639999999999

Problem: The “float” accumulator loses precision
Solution:  Increase precision for the summation    

Insufficient Precision Type



Accuracy Bugs

● Accuracy bugs correspond to large precision loss

● 14% (38/269) are accuracy bugs in our dataset with a symptom of wrong results

● Most of the bugs are related to
○ Insufficient precision types
○ Buggy arithmetic expressions
○ Ill-conditioned problems

● Bug exposure: to generate inputs for automated detection remains a challenge



Example of Special Value Bug
>>>  import numpy as n
>>>  np.max ( np.array( [-1, np.nan, -2] ) )
-2

Problem: Comparison against NaN evaluates to false
Solution: Check for NaN inputs

   

   

Missing NaN Check



Bugs Related to Special Values
● Special values are signed zero, subnormal numbers, infinities and NaNs

● We found 28% (76/269) of numerical bugs are related to special values

● Common symptoms include NaN or other wrong results, infinite loops

● Most of these bugs involve:
○ Missing or buggy NaN checks
○ Overflow/underflow

● Bug exposure:
○ Insert NaNs to inputs to test missing/buggy NaN checks
○ To generate fair inputs to test overflow/underflow remains a challenge



Convergence Bugs
● Iterative or series approximation diverges or converges too slowly due to 

magnified roundoff or truncation errors

● 21% (56/269) of numerical bugs are convergence bugs

● Common convergence bugs include:
○ Problematic approximation formula that yield wrong result
○ Problematic iterative approximation causes infinite loop
○ NaNs cause divergent behavior

● Detecting and fixing these bugs requires domain knowledge
○ Usually requires finding a better approximation technique



Correctness Bugs

● 37% (99/269) of numerical bugs are correctness bugs

● Common correctness bugs include:
○ Typographical errors when transcribing formulas
○ Using approximations outside a function’s domain
○ Compiler optimizations violating semantics of mathematical operations

● The most common symptom was wrong results

● Bug exposure: users often compare against less efficient implementations



Lessons Learned
● Few patterns for bug finding and bug fixing

○ Still these could be applied to other code bases

● A large number of bugs are domain specific
○ Techniques such as differential testing may be useful to find them

● Special value bugs, accuracy bugs, and convergence bugs could be found 
applying program analysis techniques

● In general, automated bug fixing is very challenging for numerical bugs

● No indication during manual inspection that users or developers use tools for 
bug finding or bug fixing



● We identified and examined 269 numerical bugs out of 828 bugs from a diverse 
set of numerical libraries: NumPy, SciPy, Elemental, LAPACK, and GSL 

● We found that numerical bugs can be largely categorized into four groups: 
accuracy bugs, special-value bugs, convergence bugs, and correctness bugs

● We studied the symptoms and fixes of the four bug categories and discussed 
the opportunities to automate detection and fixing

Conclusions



Acknowledgments



Questions?

higuo@ucdavis.edu

https://hguo15.github.io/huiguo.github.io/

mailto:higuo@ucdavis.edu
https://hguo15.github.io/huiguo.github.io/


Backup Slides



Bug Categorization
32% (269/828) of the bugs examined are numerical bugs,

Library Accuracy Special Values Convergence Correctness Total

NumPy 5 16 0 3 24
SciPy 8 27 6 30 71
Elemental 0 0 0 9 9
LAPACK 11 11 11 9 42
GSL 14 22 39 48 123

Total 38 76 56 99 269



Symptoms of Numerical Bugs

The most common symptom of numerical bugs are wrong results



Bug Fixing Strategies

Automating bug fixing for numerical bugs may be difficult in most cases


