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ABSTRACT

Floating-point types are notorious for their intricate representation.
The effective use of mixed precision, i.e., using various precisions in
different computations, is critical to achieve a good balance between
accuracy and performance. Unfortunately, reasoning about mixed
precision is difficult even for numerical experts. Techniques have
been proposed to systematically search over floating-point vari-
ables and/or program instructions to find a faster, mixed-precision
version of a given program. These techniques, however, are char-
acterized by their black box nature, and face scalability limitations
due to the large search space. In this paper, we exploit the com-
munity structure of floating-point variables to devise a scalable
hierarchical search for precision tuning. Specifically, we perform
dependence analysis and edge profiling to create a weighted depen-
dence graph that presents a network of floating-point variables. We
then formulate hierarchy construction on the network as a commu-
nity detection problem, and present a hierarchical search algorithm
that iteratively lowers precision with regard to communities. We
implement our algorithm in the tool HiFPTuner, and show that it
exhibits higher search efficiency over the state of the art for 75.9%
of the experiments taking 59.6% less search time on average. More-
over, HiFPTuner finds more profitable configurations for 51.7%
of the experiments, with one known to be as good as the global
optimum found through exhaustive search.
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1 INTRODUCTION

The use of numerical software has grown rapidly over the past
few years. From computer games to safety-critical systems, a large
variety of applications today make extensive use of floating point.
Unfortunately, floating-point computation is notoriously unintu-
itive and floating-point programs suffer from a large variety of
accuracy problems including extreme sensitivity to large roundoff
errors and incorrectly handled numerical exceptions [20]. This has
led to software bugs that have caused catastrophic failures [6, 7, 34].
To strengthen the accuracy of floating-point programs and there-
fore evade potential failures, a common practice is to use the highest
available precision. Higher precision provides higher magnitude of
representable numbers with increased precision. However, using
the highest precision uniformly through the program can have a
negative effect in performance.

Techniques [16, 19, 24, 30, 31] have been proposed to assist pro-
grammers in exploring the trade-off between floating-point accu-
racy and performance. Their main goal is to improve performance
by reducing precision with respect to an accuracy constraint. With
regards to attaining optimally decreased precision, such techniques
are divided into two categories: (1) using a static performance and
accuracy model to formulate precision tuning as an optimization
problem, and (2) dynamically searching through different precisions
to find a local optimum. Because of the limitation of error-analysis
techniques required in the model, static approaches aim at tuning
floating-point expressions rather than programs as a whole. On the
other hand, dynamic approaches are able to tune medium-sized pro-
grams, but require to explore large search spaces, and the solutions
can deviate significantly from the global optima.

In this paper, we present a community detection method for
floating-point variables, and exploit it on dynamic precision tuning
to improve both scalability of the search, and the quality of the
proposed solutions. Unlike existing dynamic tuning approaches,
which treat the program as a black box, we analyze the source code
and its runtime behaviors to identify dependencies among floating-
point variables, and to provide a customized hierarchical search for
each program under analysis.

Our algorithm improves scalability by reducing search effort.
We refer to search effort as the number of configurations that the
search algorithm explores during precision tuning. Because each
configuration requires to run the program to test accuracy and
measure performance, reducing the number of configurations leads
to a more scalable search algorithm. The quality of a configuration is
measured in terms of the degree to which precision is decreased, and
the program speedup achieved after tuning. A common mistake is
to regard these two as equivalent when in reality program speedup
can be affected by a variety of factors. One such factor is the number
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Figure 1: Frequency of precision shifting during the execution of a floating-point program implementing the Simpson’s rule (left column),

a tuned version of the program produced by a blind search (middle column), and a tuned program version produced by an informed search

(right column). The two graphs in each column correspond to the same program when repeating a loop 2 times (top) and 10 times (bottom).

of type casts introduced when variables used in an expression have
different floating-point types. In this paper, we focus on program
speedup when evaluating precision configurations.

The main insight is that avoiding frequent shifts in precision at
runtime contributes to better overall performance. By doing so, we
amortize the performance overhead imposed by mixed precision
due to type castings, and potentially enable optimizations that target
uniform precision such as vectorization. To achieve this, we analyze
the dependencies among variables (read-after-write dependencies),
and gradually leverage these dependencies to guide the search. We
refer to this as an informed search. Conversely, a blind search does
not take variable dependencies into consideration, thus proposing
configurations that may not improve performance as much.

As an example, Figure 1 plots the precision of executed instruc-
tions in three programs: a sample floating-point program that ap-
proximates the definite integral of sin(πx ) on interval (0, 1) using
the Simpson’s rule [25], a tuned version of this program produced
by a blind-search approach, and a tuned version for which an in-
formed search is used. The initial program uses long double (80 bits)
and double (64 bits) precision, and contains a loop. The left column
in Figure 1 shows two graphs for the initial program when the loop
iterates 2 times (top row) and 10 times (bottom row), respectively.
As the number of iterations increases, we observe more shifting
in precision. The middle column shows that the tuned program
produced by the blind search uses lower precision — float (32 bits)
— for some instructions, but the shifting in precision increases sig-
nificantly. On the other hand, the tuned program produced by the
informed search, shown in the right column, shifts precision less of-
ten during execution. Moreover, the program avoids the use of long
double precision except for two cast instructions introduced by a
long-double format specifier in a print statement at the end of the
execution. Overall, the informed search proposes tuned programs

that use precision in a more consistent manner, i.e., reducing the
frequency of precision shifting at runtime.

In this paper, we present the first informed search for floating-
point precision tuning. Specifically, we create a variable commu-
nity hierarchy based on the dependence analysis for the target
program, which groups dependent variables that may require the
same level of precision. A hierarchical search is deployed on the
community structure to informatively prune the search space, and
explore promising precision configurations. We implement our hier-
archical search in a tool named HiFPTuner, short for Hierarchical
Floating-Point precision tuner. We evaluate HiFPTuner on nine
floating-point programs and compare it against the state of the
art. The experimental results show that HiFPTuner is effective at
finding precision configurations in significantly fewer runs. In par-
ticular, we find that for 22 out of 29 experiments, HiFPTuner finds
configurations that lead to equivalent or larger program speedups
than the state of the art while exploring 59.6% fewer configurations.
Furthermore, HiFPTuner finds more profitable configurations for
51.7% experiments. This paper makes the following contributions:

• We present an algorithm to explore the community structure of
variables in floating-point programs (Section 3).
• We investigate the use of community structures for precision
tuning, and present a hierarchical search algorithm that exploits
these community structures (Section 3).
• We implement our algorithm in the tool HiFPTuner, and demon-
strate its effectiveness in terms of search efforts and quality of
proposed configurations (Section 4).
• We provide a detailed comparison of HiFPTuner and the state
of the art (Section 4).

We present our motivation in Section 2, discuss the limitations in
Section 5 and related work in Section 6, and conclude in Section 7.
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2 MOTIVATION

In this section, we present an illustrative example to describe the
limitations of state-of-the-art search-based precision tuners and
motivate our hierarchical search algorithm based on the community
structure of floating-point variables.

2.1 An Illustrative Example

Precision tuning considers all floating-point variables declared in
functions defined in the program, as well as calls to library func-
tions for which lower-precision implementations exist. For example,
program simpsons in Figure 2 (first discussed in Section 1) declares
nine long double variables — three variables in function fun (p, pi ,
and q) and six variables in function main (a, b, h, s , x , and f uzz) —
and makes two calls to double precision library functions acos and
sin, for which there exist single-precision implementations acosf
and sinf, respectively.

1 long double fun(long double p) {

2 long double pi = acos (-1.0);

3 long double q = sin(pi * p);

4 return q;

5 }

6

7 void main() {

8 long double a, b; // endpoints of the interval

9 // subinterval length , integral approximation , x

10 long double h, s, x;

11 const long double fuzz = 1e-26; // tolerated error

12 const int n = 2000000;

13 a = 0.0;

14 b = 1.0;

15 h = (b - a) / n;

16 x = a;

17 s = fun(x);

18 L100:

19 x = x + h;

20 s = s + 4.0 * fun(x);

21 x = x + h;

22 if (x + fuzz >= b) goto L110;

23 s = s + 2.0 * fun(x);

24 goto L100;

25 L110:

26 s = s + fun(x);

27 printf("%1.16Le\n", (long double)h * s / 3.0);

28 }

Figure 2: Sample program simpsons.

Configuration Space. Given the type candidate set {float, double,
long double}, the size of the configuration space for simpsons is
39 × 22 = 78, 732. If we assume that the average runtime of each
configuration is 1 second, then evaluating all configurations would
take 21.9 hours. While the number of configurations increases
exponentially with the number of precision allocations (floating-
point variable declarations and library calls), it would take about 110
years to evaluate all the possible configurations for a program with
20 floating-point variables in long double. Even when parallelizing
this task, the search space is just too large.

A precision configuration is evaluated by executing the result-
ing program. Only if the program satisfies a given accuracy con-
straint and has better performance than the original program, then

the configuration is evaluated as valid. The accuracy constraint,
e.g., error threshold 10−4, indicates the largest absolute value of
the relative error of the result with respect to the result produced
by the original program. For our example, the original program
produces the result 6.3661977236756841e−01. A valid configura-
tion that satisfies the accuracy constraint requires to be in range
(6.365561103903317e−01, 6.372563921399359e−01).

Search-Based Precision Tuning. While evaluating every possible
configuration in the search space is expensive, or even infeasi-
ble, the state of the art in precision tuning applies search-based
strategies to tune floating-point programs. The search strategies
currently adopted are general strategies such as random search
and binary search. Floating-point variables and function calls for
which alternative lower-precision implementations exist are listed
in a randomly chosen order. The search then blindly explores the
configuration space on the list to find a local minimum.

As an example, we show how a variant of binary search is used to
tune the simpsons program. First, variable declarations and function
calls are collected into a list:
p pi q acos sin a b s h x fuzz

While lowering precision for all elements leads to an inaccurate
program (thus invalid configuration), the tuner divides the list into
two partitions and lowers the precision for each partition at a time.
p pi q acos sin a | b s h x fuzz
p pi q acos sin a | b s h x fuzz

If either configuration satisfies the accuracy and performance con-
straints, the corresponding partition whose precision was lowered
is temporarily removed from the search space (the variables are set
to use the newly assigned precision), and the search starts again
with the remaining elements. Otherwise, the search iteratively di-
vides each partition until no partition is divisible. In our example,
the search iteratively divides the list until there are 8 partitions,
and lowering the 4th partition leads to a valid configuration.
p pi q | acos sin a | b s h | x fuzz
...
p pi | q | acos | sin a | b s | h | x | fuzz
.
p pi | q | acos | sin a | b s | h | x | fuzz

In the configuration above, the precision of sin and variable a is
lowered to float and double, respectively, and the configuration sat-
isfies accuracy and performance constraints. Thus, we then attempt
to further lower the precision of this new configuration. We set sin
to float, and a to double, temporarily remove both items from the
search space, and continue the search on the remaining elements:
p pi q acos b s h x fuzz

The list is minimized as elements are lowered and removed from
the search space. A search phase terminates when none of the
remaining elements can be lowered:
q acos

Variable q and acos require their original precisions. Up to this
point, the configuration is as follows:

p pi q acos sin a b s h x fuzz
CONFIG: d d ld d f d d d d d d

Since there are variables in double precision that could potentially
be lowered to float, we run a second search phase to continue the
exploration. The final configuration for simpsons is:

p pi q acos sin a b s h x fuzz
CONFIG1: f d ld d f f f d f d f
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Figure 3: HiFPTuner overview.

CONFIG1 is the configuration applied to the tuned program whose
plot is shown in the middle column of Figure 1. A speedup of 78.7%
is observed asmost of the long double variables are lowered to double
or float. However, we also observe that by randomly reordering
the initial list of elements, we find distinct final configurations that
lead to higher speedups:

acos p sin x b fuzz a q h pi s
CONFIG2: d f f d f f f f f d d

p h s x sin b fuzz q a pi acos
CONFIG3: d d ld d f d d d d d f

CONFIG2 has a speedup of 84.8% while CONFIG3 has a speedup of
85.7%. The ordering of variables affects how elements are grouped
during the search, and thus the final result.

2.2 Hierarchical Search

Instead of blindly searching over a sequence of variables, our search
algorithm uses a hierarchy, i.e., a community structure of variables,
which groups variables likely to require the same precision based
on their usage. In the hierarchy, a node on level i denotes a group
of separate nodes on level i − 1, therefore, a lower level describes
the partition of the nodes on its upper level. A sample hierarchy
for program simpsons (height = 3) is shown below:

p pi q acos sin | a b h x s fuzz -- L2
p pi q | acos | sin | a b h x | s | fuzz -- L1

p | pi | q | acos | sin | a | b | h | x | s | fuzz -- L0

As we can see in the example, level L2 of the hierarchy (top
level) provides a grouping of the elements from level L1. Similarly,
level L1 presents a grouping of the elements from level L0 (bottom
level). The search starts from the top level of the hierarchy, explores
distinct precision alternatives for each node (group) in the level as a
whole, and then descends until reaching the bottom. The search is
guided by the given groupings. The configuration space is reduced
both at the top of the hierarchy (fewer groups), and as the search
moves down the hierarchy. For the latter, if group {p, pi , q} on
level L1 is assigned float, for example, then each corresponding
group {p}, {pi}, and {q} on level 0 will be initialized as float before
conducting the search. Therefore, other precision combinations for
these groups, e.g., f d d, will not be explored during the search.

The intuition is that by applying a hierarchical search, we are
in favor of assigning identical precision to a group of dependent
variables, and groupings can be explicitly specified according to the
program and a user’s intention. To provide a hierarchy of variable
groupings, we leverage the semantics of the program by analyzing
the dependencies among floating-point variables. Frequently depen-
dent variables are grouped early during the hierarchy construction,
i.e., the groupings appear across most levels of the hierarchy. Thus,
these highly dependent variables are more likely to be assigned the
same precision as the search moves down the hierarchy. The hier-
archical search based on the community structure above produces

the CONFIG4 below1. This is the configuration applied to the tuned
program whose plot is shown in the right column of Figure 1. As
one can observe, precision shifting is less frequent, and a higher
speedup of 90.0% is achieved. Indeed, this is the best configuration
we find through exhaustive search. This is achieved by exploring
only 24 configurations.

p pi q acos sin a b s h x fuzz
CONFIG4: d d d d f d d d d d f

3 TECHNICAL APPROACH

We present our hierarchical search algorithm for precision tun-
ing. As shown in Figure 3, we first perform dependence analysis
and edge profiling to create a weighted dependence graph of the
program. Second, we apply community detection iteratively to con-
struct a hierarchy from the weighted dependence graph. Finally,
we apply our hierarchical search algorithm to tune the program.
The rest of this section describes each step in more detail.

3.1 Dependence Analysis and Edge Profiling

We perform dependence analysis and edge profiling to create a
weighted dependence graph. Dependence analysis summarizes the
static floating-point arithmetic assignments as a dependence graph
of variables, and edge profiling generates a weight for each depen-
dency via program instrumentation.

Definition 3.1. A weighted dependence graph for a program is a
directed graph G (V ,E,W ) where the set of vertices V represents
the floating-point variables in the program and an edge u → v ∈ E
denotes that the value of u is used to compute the value of v in at
least one arithmetic assignment, whileW : E → N implies how
many times the assignments associated with the edge are executed.

Consider program simpsons in Figure 2. Statement 3 in func-
tion fun, and statements 15-17, 19-21, 23 and 26 in function main
are analyzed and instrumented to construct the dependence graph.
Two dependence edges, from variable pi to q and variable p to q,
respectively, are added based on statement 3, and their weights
are the number of times the statement is executed. Figure 4 shows
the weighted dependence graph for program simpsons. Each sub-
graph describes a function in the program. Note that the analysis
is intraprocedural—we do not connect actual parameter variables
and formal parameter variables in a function call statement, e.g.,
variable x in statement 20 and its corresponding formal parameter
variable p in function fun. The generated dependence graph does
not include library function calls.

1The hierarchy used in the experiments to produce CONFIG4 consists of levels L1 and
L0. Here we add an auxiliary level L2 just for illustration. Note that this additional
level does not affect the final result.
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Figure 5: Hierarchy structures for program simpsons. Figure 5a

shows the hierarchy structure. The bottom level has eight nodes,

each representing a separate floating-point variable in the program.

Each of the three nodes in the top level represents a community

from the bottom level (shown by node shape and color). Edge labels

indicate weights. Figure 5b shows the corresponding ordered hier-

archy. For simplicity, we omit the unconnected variable fuzz.

3.2 Hierarchy Construction

A hierarchy is the structure used to leverage the various degrees of
dependence among variables. This structure provides hierarchically
pre-grouped variables for the search algorithm to informatively
explore during precision tuning. The rest of this subsection de-
scribes the two steps followed to construct a hierarchy based on
the weighted dependence graph.

3.2.1 Iterative Community Detection. We formulate the problem
of grouping variables as a community detection problem [22, 29]
in networks. A community is a subgraph containing nodes that are
more densely linked to each other than to the rest of the graph. We
use communities to represent sets of floating-point variables that
are likely to require identical precision. The weighted dependence
graph, extracted from the program and its runtime behaviors, pro-
vides a network of floating-point variables in which an edge and its
weight indicate the degree of dependence between two variables. By

iteratively applying community detection, the dependence among
variables is leveraged into a hierarchy.

The hierarchy is constructed from the weighted dependence
graph without considering the direction of the edges. The construc-
tion starts with a bottom level in which each variable is in a separate
group, and iteratively adds new levels by (1) applying community
detection on the current top level’s dependence graph, and (2) us-
ing the community detection results to reconstruct the dependence
graph for the new top level. The dependence graph is reconstructed
by collapsing the nodes within a same community.

The problem of community detection is computationally hard
given that the number of communities at each level is unknown,
and that the communities can be in various densities and sizes. This
problem has been widely explored in the field of networks and is not
the focus of this paper. We borrow an existing algorithm among the
most popular approaches today, modularity maximization [26, 27],
to solve our problem. Modularity Q measures the density of edges
within communities as compared to the expected density if the
edges were distributed at random. It is defined as,

Q =
1
2m
∑
i, j

(Ai j −
kikj

2m )δ (ci , c j ) (1)

where Ai j represents the weight of the edge between i and j, and
ki , kj are degrees of nodes i and j ,m = 1

2
∑
i ki is the total number

of edges in the network, thus kikj
2m is the expected weight of the

edge between nodes i and j if edges are randomly distributed, ci is
the community to which node i belongs, and the δ function δ (x ,y)
returns 1 if x = y and 0 otherwise. In the modularity maximization
algorithm, different community assignments are explored in order
to obtain maximum modularity. In this paper, we use an existing
implementation of this algorithm, Fast Unfolding [14].

Consider the dependence graph for simpsons in Figure 4. Initially,
each of the 9 variables is placed in a distinct group.

p | pi | q | a | b | s | h | x | fuzz

We compute the value of Q using the current groups and attempt
to optimize it by moving one variable from its current group to the
group of one of its neighbors in the dependence graph. For example,
as variable q is linked to variables p and pi in Figure 4, we randomly
select p, and move q to p’s group.

p q | pi | a | b | s | h | x | fuzz

This increases the value of Q , and we keep moving distinct vari-
ables around until no movement of a variable can further optimize
Q . When community detection is finished, the identified commu-
nities are added to the top of the hierarchy to form a new level
i + 1. This new level captures the communities identified in level i ,
and their reconstructed dependence graph. Community detection is
iteratively applied on the current top level of the hierarchy until a
maximum of modularity is attained. In our example, this is achieved
with two levels, and the communities at the top level are:

p q pi | a b h x | s | fuzz

Figure 5a shows a graphical illustration of the hierarchy for
simpsons. Note that the dependence graph has been reconstructed
in the top level, and weights have been updated accordingly.

3.2.2 Hierarchy Ordering. Hierarchy ordering consists of order-
ing the items in each level of the hierarchy to follow the dependence
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Algorithm 1 Hierarchical Search Algorithm
Require: Program P , Hierarchy of variables H [ ], Initial Config Cp
Ensure: Find local minimum configuration Copt
1. Search space S ← SearchSpace(Cp )
2. Result r0, Performance p0 ← RunConfiguration(Cp, P )
3. Copt ← Cp
4. popt ← p0
5. for i ← len (H ) − 1 to 0 do
6. Copt_i , pi ← LevelSearch(H [i], Copt , S, r0, p0, P )
7. if pi > popt then
8. Copt ← Copt_i
9. popt ← pi
10. end if

11. end for

12. return Copt
13. procedure LevelSearch (communities, C, S, r0, p0, P )
14. Community list Tu ← [ ]
15. Search range list Sr ← [ ]
16. for i in communities do
17. Tu ← Tu+ unfold(i, C, S )
18. Sr ← Sr+ unfold(i, C, S )
19. end for

20. Tu, Sr ← Tu, Sr+ Library function calls
21. Copt ← BaseSearch(Tu, Sr, r0, p0, P )
22. return Copt
23. end procedure

flow. For the bottom level, we find the topological order of the vari-
ables in the initial dependence graph generated by the dependence
analysis, and edge profiling. We permute the nodes in the bottom
level accordingly. For higher levels we create the corresponding
community dependence graphs. The community dependence graph
of level i is constructed by merging the nodes of the dependence
graph at level i − 1. Edges inside a community are removed. The
ordered hierarchy for simpsons is shown in Figure 5b.

3.3 Hierarchical Precision Tuning Algorithm

Based on the ordered hierarchy, our algorithm starts searching from
the top of the hierarchy down to the bottom. The resulting precision
configuration at hierarchy level i + 1 becomes the initial configura-
tion for level i , thus reducing the search space. Configurations are
evaluated in terms of the performance of the resulting programs. If
no configuration at level i has better performance than its initial
configuration, then the initial configuration is passed down as the
configuration of level i . In such situations, the search performed at
level i has no effect in the result; the configuration found at level
i +1 is used instead. From our experiments, we observe than search-
ing the bottom level rarely produces a better configuration. Thus,
in practice, skipping the search at the bottom level can effectively
improve search efficiency at the cost of missing further refinements
on occasion. More details on this are discussed in our experimental
evaluation in Section 4.

As described in Algorithm 1, we start by creating the search
space S based on the initial configuration Cp of program P (line 1).
We then apply the configurationCp to program P , run the resulting
program, and log both the result r0 and its performance p0 (line
2). These two values are used by BaseSearch (line 21) to evaluate
whether candidate configurations satisfy the accuracy constraint

and improve performance with respect to r0 and Cp , respectively.
We proceed through each level of the hierarchy (lines 5-11) to pro-
duce a level configuration by invoking LevelSearch, defined on
lines 13-23. This procedure creates the community list and its corre-
sponding search range list with respect to the communities on the
hierarchy level (lines 14-20). Note that a community may contain
variables in distinct search ranges (e.g., variable a in search range
{f ,d}, variable b in {f ∗,d∗, ld∗}). To simplify the search, communi-
ties are unfolded (lines 17-18). This means that a community can be
broken down into two or more communities based on the search
ranges of its elements. We add library function calls separately, i.e.,
we create a community for each of these calls (line 20).

Finally, BaseSearch (line 21) is applied on the list of communi-
ties and search ranges for each level. The base search algorithm
iteratively proposes candidate configurations with lower precision,
which are evaluated by RunConfiguration on accuracy and per-
formance. The configuration with the best performance is returned
by the algorithm. Similarly, the best configuration found across hi-
erarchy levels is returned by the hierarchical search algorithm (see
lines 7-10, 12). Note that the base search strategy is independent
of the hierarchical algorithm, and can be interchangeable. Sample
search strategies include random search, binary search, and genetic
search. In the rest of this paper we adopt binary search to facilitate
comparison with the state of the art.

4 EXPERIMENTAL EVALUATION

The main goal of this experimental evaluation is to answer the
following research questions:
RQ1. How efficient is hierarchical search for precision tuning in

comparison to the state of the art?
RQ2. How effective is hierarchical search in finding higher quality

configurations than the state of the art?
We compare HiFPTuner against a dynamic non-hierarchical

search algorithm, as implemented in the tool Precimonious [31].

4.1 Experimental Setup

We implement dependence analysis and edge profiling using the
LLVM compiler infrastructure [4]. Hierarchy construction takes as
input the weighted program dependence graph, and generates its
hierarchy structure using the NetworkX [5] Python package2. The
hierarchical search algorithm is implemented in Python, and uses
Precimonious’ program transformation LLVM passes to change
the precision of a program given a configuration.

We evaluate HiFPTuner on three long-double programs: simp-
sons — an implementation of the widely used Simpson’s rule [25]
for integration in numerical analysis, arclength — a program first
introduced by [11] and used as a benchmark for precision tun-
ing in prior work [30, 31], and piqpr — an implementation of the
“Bailey-Borwein-Plouffe” (BBP) algorithm [10] for computing digits
of π beginning at the position of 0.3 ∗ 108 [1]. We also evaluate
HiFPTuner on four double precision routines (fft, gaussian, sum,
and bessel) from the GNU Scientific Library (GSL) [3], and two pro-
grams (ep and cg) from the NAS Parallel Benchmarks [12]. Table 1
describes each program in terms of lines of code (LOC), the initial

2NetworkX uses Fast Unfolding as the community detection module [2].
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Table 1: Benchmark statistics.

Initial
Program LOC L D F C Inputs
simpsons 40 9 0 0 2 Input-free
arclength 45 8 0 0 3 Input-free
piqpr 125 17 0 0 0 Input-free
fft 264 0 22 1 2 Coverage inputs
gaussian 461 0 56 0 2 Coverage inputs
sum 405 0 34 0 2 Coverage inputs
bessel 148 0 24 0 5 Coverage inputs
ep 260 0 13 0 4 Class A
cg 880 0 32 0 3 Class A

precision configuration, and testing inputs. The initial configura-
tion of each program is in the form “L D F C”, where L, D, and F
correspond to the number of long double, double, and float variables
declared in the original program, and C is the number of function
calls considered for precision tuning. Programs simpsons, arclength
and piqpr are input-free, the GSL benchmarks are tuned and tested
over an input set that maximizes code coverage [31], and we use
the provided input Class A for the NAS Parallel Benchmarks.

We annotate the programs with calls to utility functions to log
results and measure performance, except for the NAS Benchmarks,
which already include built-in accuracy checking routines. We use
four error thresholds, 10−4, 10−6, 10−8, 10−10 for tuning, which
bound the relative error of the result. Because ep originally uses
error threshold 10−8, we tune the precision using equal or larger
thresholds than 10−8. Thus, we run a total of 35 experiments: 8 pro-
grams× 4 error thresholds + 1 program× 3 error thresholds.We run
the experiments on a 2-core Intel E5-2676 2.4 GHz processor, 4GB
RAM workstation with Ubuntu 16.04 LTS. Finally, we use the clang
compiler with optimization level -O2 for performance evaluation,
which is the default optimization used by our benchmarks.

We compare HiFPTuner against the state-of-the-art precision
tuner Precimonious in terms of the efficiency of the search, and
the quality of the proposed configurations. Precimonious performs
a variant of binary search known as delta debugging [35], which
guarantees to find a local 1-minimum if one exists. A configuration
is said to be 1-minimal if lowering any additional variable (or func-
tion call) leads to a configuration that produces an inaccurate result,
or is not faster than the original program. The algorithm’s average
time complexity isO (n log n), and worst caseO (n2), where n is the
number of elements to be tuned. For a fair comparison and to better
evaluate the benefit of a hierarchical search over a non-hierarchical
approach, we choose to use the same delta-debugging search as
our base search algorithm. As noted in Section 3, the base search
algorithm can be replaced by other search strategies.

4.2 Experimental Results

In search-based precision tuning, the number of configurations ex-
plored, i.e., run, by the search algorithm along with the total search
time demonstrate the algorithm’s efforts in finding a solution. How-
ever, the total search time is mainly dominated by the execution
time of each explored configuration. Unfortunately, configuration
runtime vary widely due to the performance disparity of instruc-
tions in different floating-point precisions. To preclude the effects

of such runtime disparity, we simply use the number of explored
configurations to represent the search efforts of the algorithm.

In Table 2, “Configs” gives the total number of configurations run
by each tool to find the final configuration. For example, HiFPTuner
runs a total of 24 configurations for program simpsons 10−10 while
Precimonious runs 124 configurations. For HiFPTuner, we run
a thorough search to the bottom of the hierarchy for the sake of
completeness and provide the breakdown of configurations run at
each level. However, as described in Section 3, exploring the bottom
level rarely produces a better configuration, and thus can be skipped
in general. In the case of simpsons 10−10, 24 and 48 configurations
are run at levels L1 (top) and L0 (bottom), respectively, and the top
level proposes the final configuration (searching the bottom level
does not produce a better configuration) as indicated by “Configs”.
Finally, Table 2 lists the final configurations in the form “L D F S”,
where L, D, and F are the number of long double, double, and float
variables to declare in the tuned programs, and S is the number
of function calls to switch to lower precision. “Speedup” gives the
speedup observed for the tuned programs. We report the average
speedup across five runs.

For 6 out of 35 experiments, bessel with error thresholds 10−10
through 10−4 and fft 10−6 to 10−4, the programs satisfy both accu-
racy and performance constraints with the lowest precision and
thus a search is not necessary. Table 3 shows the initial and final
configurations for these programs, as well as the speedup observed.
For the remaining experiments, HiFPTuner runs fewer configu-
rations than Precimonious for the majority (24 out of 29) of the
experiments. In 22 of these cases, HiFPTuner finds comparable or
better configurations (see bold numbers under HiFPTuner “Con-
figs” in Table 2). Moreover, HiFPTuner finds better configurations
for 3 additional experiments beyond the 22 (e.g., sum 10−8 with 18%
vs. 0% speedup). We use the following definitions to summarize
HiFPTuner’s results.

Definition 4.1 (Configuration Quality). A configuration C1 is bet-
ter than a configuration C2 if C1 leads to a program with higher
speedup than C2.

Definition 4.2 (Search Efficiency). A search strategy S1 is more
efficient than search strategy S2 if S1 finds an equivalent or a better
configuration than S2 faster.

Search Efficiency Result: HiFPTuner exhibits higher search effi-
ciency over Precimonious for 75.9% (22 out of 29) of the experiments
that require fine tuning (see bold numbers under HiFPTuner “Con-
figs” in Table 2).

Definition 4.3 (Search Effectiveness). A search strategy S1 is more
effective than search strategy S2 if S1’s final configuration is better
than S2’s final configuration.

Search Effectiveness Result: HiFPTuner finds better configura-
tions for 51.7% (15 out of 29) of the experiments that require fine
tuning compared to Precimonious (see bold numbers under HiFP-
Tuner “Speedup” in Table 2).

4.2.1 Search Efficiency. HiFPTuner improves search efficiency
by 59.6% on average over Precimonious for 22 out of 29 experi-
ments that require fine tuning (see bold numbers under HiFPTuner
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Table 2: Precision tuning results for error thresholds 10−10, 10−8, 10−6, and 10−4. The initial configuration is shown in the form “L D F C”

where L, D, and F denote the number of long double, double and float variables declared in the original program, and C is the number of

function calls to be tuned (e.g., sin). “Configs” show the total number of configurations run by each tool to find the final configuration. The

columns under “Configs/Level” — L2, L1, L0— show the number of configurations run at each level of the hierarchy. “L D F S” gives the final

configuration proposed by each tool. We modify each program according to the final configuration, and report the corresponding speedup in

columns “Speedup”. Note that the top level for programs simpsons, arclength, and piqpr is “L1”. We use ‘-’ as final configuration and speedup

when a tool does not find a configuration that satisfies the accuracy constraint, and improves performance. We show in bold the number of

configurations explored by the most efficient tool.

E10−10 Initial HiFPTuner Precimonious
Configs/Level Final Configuration Final Configuration

Program L D F C Configs L2 L1 L0 L D F S Speedup Configs L D F S Speedup
simpsons 9 0 0 2 24 n/a 24 48 0 8 1 1 90.0% 124 1 4 4 1 80.0%
arclength 8 0 0 3 30 n/a 30 39 0 7 1 1 4.9% 142 0 7 1 1 4.9%
piqpr 17 0 0 0 66 n/a 66 189 - - - - - 212 - - - - -
fft 0 22 1 2 79 79 92 98 0 21 2 0 0.8% 103 - - - - -
gaussian 0 56 0 2 79 79 94 232 - - - - - 675 - - - - -
sum 0 34 0 2 351 351 122 290 0 13 21 2 2.5% 379 - - - - -
cg 0 32 0 3 91 91 288 574 - - - - - 1027 0 25 7 2 2.7%

E10−8 Initial HiFPTuner Precimonious
Configs/Level Final Configuration Final Configuration

Program L D F C Configs L2 L1 L0 L D F S Speedup Configs L D F S Speedup
simpsons 9 0 0 2 24 n/a 24 58 0 8 1 1 90.0% 116 1 3 5 1 78.7%
arclength 8 0 0 3 30 n/a 30 39 0 7 1 1 4.9% 142 0 7 1 1 4.9%
piqpr 17 0 0 0 52 n/a 52 76 3 14 0 0 41.2% 164 3 13 1 0 0.3%
fft 0 22 1 2 43 43 52 100 - - - - - 297 0 21 2 0 0%
gaussian 0 56 0 2 211 211 132 74 0 10 46 2 0% 275 - - - - -
sum 0 34 0 2 533 261 64 208 0 10 24 2 18.0% 433 - - - - -
ep 0 13 0 4 45 45 38 76 - - - - - 77 - - - - -
cg 0 32 0 3 497 497 116 232 0 24 8 3 3.3% 735 - - - - -
E10−6 Initial HiFPTuner Precimonious

Configs/Level Final Configuration Final Configuration
Program L D F C Configs L2 L1 L0 L D F S Speedup Configs L D F S Speedup
simpsons 9 0 0 2 22 n/a 16 6 0 2 7 2 82.0% 24 0 2 7 2 82.0%
arclength 8 0 0 3 16 n/a 16 27 0 2 6 2 44.7% 94 - - - - -
piqpr 17 0 0 0 54 n/a 54 76 - - - - - 216 3 10 4 0 0.7%

gaussian 0 56 0 2 69 69 84 538 0 54 2 2 0.4% 361 - - - - -
sum 0 34 0 2 719 272 149 298 0 10 24 2 18.0% 509 0 10 24 2 18.0%
ep 0 13 0 4 17 17 4 92 0 10 3 4 45.0% 95 0 6 7 4 33.0%
cg 0 32 0 3 385 385 54 336 0 21 11 3 5.6% 361 0 25 7 3 0%
E10−4 Initial HiFPTuner Precimonious

Configs/Level Final Configuration Final Configuration
Program L D F C Configs L2 L1 L0 L D F S Speedup Configs L D F S Speedup
simpsons 9 0 0 2 16 n/a 16 6 0 5 4 2 82.0% 24 0 2 7 2 82.0%
arclength 8 0 0 3 10 n/a 10 15 0 6 2 3 85.8% 26 0 5 3 3 83.6%
piqpr 17 0 0 0 22 n/a 22 119 5 4 8 0 0.7% 134 - - - - -
gaussian 0 56 0 2 147 147 306 494 - - - - - 233 - - - - -
sum 0 34 0 2 195 195 156 578 - - - - - 179 - - - - -
ep 0 13 0 4 17 17 4 70 0 10 3 4 45.0% 113 0 5 8 4 43.0%
cg 0 32 0 3 197 157 20 20 0 3 29 3 10.4% 97 0 2 30 3 6.8%

Table 3: Benchmarks that can use uniform single precision.

Initial Final Configuration
Program Thresholds D F C D F S Speedup

bessel all 24 0 5 0 24 5 11.5%
fft 10−6, 10−4 22 1 2 0 23 2 43.4%

“Configs” in Table 2). In other words, HiFPTuner explores 59.6%
fewer configurations on average for 22 out of the 29 experiments
while finding equivalent or better configurations than Precimo-
nious. Such improvement, which indicates a saving of more than
half of the search time without affecting configuration quality, is
significant, especially for long-running programs. This improve-
ment is due to the reduction in the number of tunable items at the
top level of the hierarchy compared to the number of variables and
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Figure 6: Search efficiency of HiFPTuner and Precimonious. The

average precision of a configuration is calculated based on the num-

ber of bits used for floating-point variable allocations, e.g., the aver-

age precision is 32 if all allocations are in float. Each subfigure plots

configurations whose output satisfy the specified error threshold

10−8. HiFPTuner converges 1.4× and 2× faster than Precimonious

for simpsons, and arclength, respectively.

function calls considered by Precimonious. For example, HiFP-
Tuner only explores 6 communities at the top level for simpsons
while Precimonious searches over 11 items (individual variables
and function calls). The construction of the communities plays
a critical role in improving search efficiency. Constructing these
communities “blindly” can result in communities that cannot be
assigned uniform precision to meet the accuracy and performance
constraints, which eventually leads to worse configurations.

To further examine the improvement of HiFPTuner on search
efficiency, we visualize the tuning processes of HiFPTuner and
Precimonious in two experiments and observe their convergence
rates. More specifically, we collect the configurations evaluated as
valid subject to the accuracy constraint during the search (as a repre-
sentative of all the explored configurations) to observe the decrease
of the average precision of the explored configurations. Figure 6
plots the precision variation of the configurations with respect to
the number of explored configurations for the programs simpsons
10−8 and arclentgh 10−8. We observe that, overall, HiFPTuner con-
verges 1.4× and 2× faster than Precimonious on simpsons and
arclength, respectively. The final valid configurations for each tool
are very close on the average precision. Additionally, “HiFPTuner
level line” marks the point at which HiFPTuner moves from the top
to the bottom level. As it can be observed in the plot of simpsons, the
top-level final valid configuration is further improved on precision
at the bottom level, however, it is found to be faster than all the con-
figurations explored at the bottom level. For arclength, the top-level
final configuration remains constant after the exploration descends

Table 4: Hierarchy construction results.

Communities
Program Elements h:mm:ss Level 2 Level 1 Level 0
simpsons 11 0:02:53 n/a 6 11
arclength 11 0:00:56 n/a 7 11
piqpr 17 1:52:10 n/a 6 17
fft 25 0:14:12 11 14 25
gaussian 58 0:10:44 18 22 58
sum 36 0:05:48 23 24 36
bessel 29 0:04:44 11 14 29
ep 17 0:17:25 9 9 17
cg 35 0:11:39 21 24 35

to the bottom level. Both experiments show that it is unnecessary
to explore the bottom level, without which, HiFPTuner converges
4.8× and 4.7× faster than Precimonious.

4.2.2 Search Effectiveness. HiFPTuner proposes a configura-
tion that improves performance for 20 out of 29 experiments. For
the remaining 9 experiments, either a new configuration is pro-
posed that does not lead to speedup, or the original configuration
is returned (marked with ‘-’). Compared to Precimonious, HiFP-
Tuner succeeds to tune 6 more programs (in other words, it finds
a better configuration than the initial configuration) and reports a
configuration that leads to larger speedups than Precimonious’s
for 15 programs in total.

To shed some light on the search effectiveness of HiFPTuner,
we further examine the final configurations. As we can observe
from Table 2, most of the configurations found by HiFPTuner are
from the top level (25 out of 29), which indicates that variables
within a given community are successfully assigned the same preci-
sion. In other words, the communities effectively guide the search
(HiFPTuner) to a configuration that leads to larger speedups com-
pared to a blind search (Precimonious) that explores too widely.
This observation, i.e., reducing the large search space is useful to
find better configurations, can also be learned from another point of
view. Consider the program sum as an example, for error threshold
10−6, both HiFPTuner and Precimonious find a configuration that
leads to 18% speedup, however for the larger error threshold 10−4,
neither of them succeeds to find a configuration even though the
configuration found for error threshold 10−6 surely satisfies error
threshold 10−4. In this case, a tighter error threshold successfully
reduced the search space to a smaller space fromwhich it was easier
to find a profitable configuration.

4.3 Hierarchy Construction Results

We show the cost of hierarchy construction in Table 4. Hierarchy
construction is relatively cheap for simpsons and arclength, taking
2 min 53 sec, and 56 sec, respectively. This is not the case for piqpr,
for which hierarchy construction takes almost 2 hours. For the rest
of the programs, hierarchy construction takes from 4 min to 17
min. Note that we only have to construct the hierarchy once per
program despite the number of error thresholds to explore. Finally,
we find that most of the time in constructing the hierarchy is spent
in edge profiling. This task could be further optimized in the future.

Table 4 also lists the total number of elements (variables and
function calls) for which community detection is performed, as
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well as the number of communities detected at each hierarchy
level. The long-double programs simpsons, arclength, and piqpr
only have two hierarchy levels. Note that the resulting communities
are further unfolded based on the initial precision of the variables
within a community, therefore, a higher level can contain as many
communities as its lower level, e.g., program ep.

5 LIMITATIONS AND FUTUREWORK

As with other dynamic tuners, HiFPTuner’s configurations are
dependent on the tuning inputs, and no accuracy guarantee is
provided for untested inputs. We performed additional experiments
that show that our configurations satisfy accuracy constraints for
a large number of untested inputs, however it remains future work
to use complementary input generation tools to ensure that the
tuning input set is as representative as possible. On the other hand,
HiFPTuner can be used to tune mid-size programs, and advances
the state of the art in dynamic precision tuning by enabling more
effective and efficient tuning. Given our promising results for the
mid-size programs, we plan to expand our evaluation in the future
to larger programs for which we expect to see even larger benefits.

Our dependence analysis focuses on floating-point variables.
While there are library function calls such as sin and cos in the
search space, we would like to include these in the dependence anal-
ysis. We would also like to investigate whether the configurations
proposed by HiFPTuner enable additional floating-point optimiza-
tions, and/or vectorization. Another future direction is to determine
the effectiveness of various community detection algorithms for
precision tuning. Finally, we believe that the idea of leveraging
program information to guide the search could be adopted in other
settings that involve large search spaces, such as performance and
parameter tuning, which are out of the scope of this paper.

6 RELATEDWORK

Floating-Point Precision Tuning. Precimonious [31] is a dynamic
analysis that finds a type configuration for floating-point variables
that satisfies a given accuracy constraint, and improves perfor-
mance. It uses the delta-debugging algorithm to search over the
types of floating-point variables, in their order of declaration. As
noted in this paper, the order of the variables has an impact on the
effectiveness of the search, and the quality of the configurations.
Instead, we propose a hierarchical search that exploits the com-
munity structure of variables to improve the effectiveness of the
search. Blame analysis [30] performs shadow execution to identify
variables that are numerically insensitive, which can be excluded
from the search space before tuning. This technique is complemen-
tary to our work, and it can be used to preprocess the search space
before applying HiFPTuner.

Chiang et al. [16] present a static approach to precision alloca-
tion based on formal analysis via Symbolic Taylor Expansions, and
error analysis based on interval functions. Unlike dynamic tools,
the precision allocation guarantees to meet the error target across
all program inputs in an interval. However, this approach is lim-
ited to conditional-free expressions. Darulova et al. [19] propose a
technique to rewrite programs by adjusting the evaluation order of
arithmetic expressions prior to tuning. While sound, the technique
is limited to relatively small programs that can be verified statically.

Lam et al. [24] build mixed-precision binaries via instrumen-
tation. A brute-force algorithm is used to find double precision
instructions that can be replaced with single precision, and later
extend this work to visualize the program’s precision sensitivity
into histograms [23]. Schkufza et al. [33] develop a stochastic search
method to optimize floating-point programs. The algorithm applies
a variety of program transformations, trading bit-wise precision for
performance to enhance compiler optimization on floating-point
binaries. Instead, HiFPTuner assists programmers in finding a
mixed-precision program at the source level whose performance is
improved. FloatWatch [15] identifies instructions that can be run in
a lower precision by computing the overall range of values for each
instruction. All the above methods suffer from scalability limita-
tions, and do not leverage community structure to guide the search.
Finally, a number of tools (e.g., [8, 13, 28, 32]) have been proposed
to find accuracy problems, and/or improve accuracy. On the other
hand, HiFPTuner reduces precision to improve performance.

Floating-Point Code Testing. Testing tools for floating-point pro-
grams could provide support for precision tuners to evaluate con-
figurations. So far, much effort has been put into the automatic
generation of program inputs. Chiang et al. [18] guide a random
search on the input domain to automatically locate inputs that trig-
ger high numerical errors in the results. In [17], the authors discover
inputs for divergence detection. Bagnara et al. [9] address constraint
solving over floating-point numbers and generate path-oriented
test inputs for floating-point programs. Fu et al. [21] applies un-
constrained programming to identify inputs that can cover a new
branch, and therefore achieve high coverage. The above tools could
be combined with HiFPTuner to further strengthen its robustness.

7 CONCLUSION

We presented HiFPTuner, a semantic-based search algorithm to
hierarchically guide the tuning of floating-point programs to im-
prove performance with respect to numerical accuracy. Unlike
other search-based tuners that treat the program as a black box, we
analyze the code and its runtime behaviors to create a weighted
dependence graph used to detect communities of variables and
construct a hierarchy. We evaluated HiFPTuner on nine numerical
programs, and compared its efficiency and effectiveness against the
state-of-the-art tuner Precimonious. HiFPTuner exhibits higher
search efficiency over Precimonious for 75.9% of the experiments
that require fine tuning, taking 59.6% less search time on average.
Moreover, HiFPTuner finds configurations with larger speedup
than Precimonious’s for 51.7% of the experiments. In one case,
HiFPTuner was able to find a configuration that lead to a speedup
as large as the global optimum configuration’s found through ex-
haustive search (simpsons with error threshold 10−8). Based on our
observation, the communities constructed from the dependence
graph successfully narrow down the search space and lead to a
more scalable and effective search in precision tuning.
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